报告时间:2022年6月14日(星期二)15:00
报告地点:腾讯会议:406-897-134
报 告 人:王六权 副教授
工作单位:武汉大学
举办单位:万象城官方网站(中国)有限公司
报告简介:
Atkin and Garvan introduced the functions $N_k(n)$ and $M_k(n)$, which denote the $k$-th moments of ranks and cranks in the theory of partitions. We relate these functions to the quotients of Eisenstein series and the Dedekind eta function. Through the theory of modular forms, we establish congruences modulo arbitrary powers of some primes for the moments and symmetrized moments of ranks and cranks. As a byproduct, we obtain similar congruences for the higher order $\spt$-functions. This talk is based on a joint work with Yifan Yang.
报告人简介:
王六权,2014年本科毕业于浙江大学,2017年博士毕业于新加坡国立大学,现为武汉大学副教授。他主要从事数论、组合分析、q-级数及特殊函数理论的研究,迄今在《Advances in Mathematics》, 《Transactions of the American Mathematical Society》、《Advances in Applied Mathematics》、《Journal of Number Theory》、《Ramanujan Journal》等期刊上发表和接收学术论文40多篇,先后主持国家自然科学基金青年基金和面上项目各一项。