学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告四十一:毛士鹏—Numerical analysis of a fully discrete finite element method for incompressible vector potential magnetohydrodynamic system

时间:2022-05-18 作者: 点击数:

报告时间:2022年05月26日(星期四)15:00-16:00

报告地点:腾讯会议 109918298

人:毛士鹏 教授

工作单位:中科院数学与系统科学研究院

举办单位:数学学院

报告简介:

We investigate a fully discrete finite element scheme for the three-dimensional incompressible magnetohydrodynamic problem based on magnetic vector potential formulation. The formulation enjoys the novel feature that it can always produce an exactly divergence-free magnetic induction discretized solution. Using a mixed finite element approach, we discretize the model by the fully discrete semi-implicit Euler scheme with the velocity and the pressure approximated by stable MINI finite elements and the magnetic vector potential by Nedelec edge element. Under a reasonable regularity hypothesis for the exact solution, error estimates for the velocity and the magnetic vector potential are rigorously established. Finally, several numerical experiments are presented to illustrate the convergence properties of the numerical scheme.

报告人简介:

毛士鹏,中国科学院数学与系统科学研究院研究员、博士生导师。中国科学院大学岗位教授。2008年博士毕业于中国科学院数学与系统科学研究院,2008-2012先后在在法国国家信息自动化研究院(INRIA)以及在瑞士苏黎世高工(ETH Zurich)做博士后和研究助理。主要研究兴趣为有限元方法及其应用,自适应算法, 计算流体力学和磁流体力学等。在 Math. Comp., Numer. Math.、SIAM. J. Numer. Math., SIAM J.Sci.Comput., Math. Model Meth. Appl. Sci. (M3AS)等SCI杂志上发表论文70余篇。曾主持和参加多项国家自然科学基金项目以及科技部、基金委重大研究计划项目,入选中科院青年创新促进会会员和获得中科院朱李月华优秀教师奖。


上一篇:学术报告四十二:芮洪兴— A low order divergence-free H(div)-conforming finite element method for Stokes flows

下一篇:学术报告四十:樊赵兵—Quantum Borcherds-Bozec algebras