报告人:陈敏 教授 浙江师范大学
报告时间: 2021年3月26日,下午15:00
腾讯会议ID: 911942241 密码:0326
报告简介:
Given a graph G = (V,E), if its vertex set V (G) can be partitioned into two non-empty subsets V1 and V2 such that ∆(G[V1 ]) ≤ d1 and ∆(G[V2 ]) ≤ d2 , then we say that G admits a (∆ d1 ,∆ d2 )-partition. If G[V1 ] and G[V2 ] are both forests with maximum degree at most d1 and d2 , respectively, then we further say that G admits an (F d1 ,F d2 )-partition. Let Gg denote the class of planar graphs with girth at least g. It is known that every graph in G5 admits a (∆3 ,∆5 )-partition. In this talk, we shall strengthen this result by proving that every graph in G5 admits an (F3 ,F5 )-partition. This is joint work with André Raspaud, Weifan Wang and Weiqiang Yu.
报告人简介:
陈敏, 2008年6月,赴法国波尔多第一大学攻读博士学位,于2010年11月提前毕业。2010年,荣获“国家优秀自费留学生奖学金”(在法留学生中,同年度数学专业仅此一人)。现为浙江师大数学与计算机科学学院教授、博士生导师,浙江省中青年学科带头人,入选浙江师大首批“学术名师培育计划”。主要研究方向为图的染色理论。迄今在J. Combin. Theory Ser. B、European J. Combin.、J. Graph Theory、Discrete Math.、Discrete Appl. Math.以及中国科学(中/英)等国内外学术刊物上发表40余篇SCI源期刊学术论文。主持国家自然科学基金面上项目2项,国家自然科学基金青年基金1项,浙江省自然科学一般项目2项,主持完成留学回国人员科研启动基金1项,主持浙江省重中之重开放项目1项,获浙江省科学技术奖二等奖1项。