报告人:侯建锋 教授 福州大学
报告时间: 2021年5月21日,上午10:00-
腾讯会议ID: 121 543 917
摘要:A bisection of a graph $G$ is a partition of its vertex set into two sets which differ in size by at most 1, and its size is the number of edges between the two sets. The Max-Bisection problem is to find a bisection of $G$ maximizing its size. There are little results on Max-Bisections of graphs. The talk concerns Max-Bisections of $H$-free graph for some special graph $H$. Bollob\'as and Scott [Problems and results on judicious partitions, Random Struct. Alg. 21 (2002) 414--430] asked for conditions that guarantee a bisection of a graph with $m$ edges in which each class has at most $(1/4+o(1)\big)m$ edges. We demonstrate that cycles of length 4 play an important role for this question, and give some results on this topic.
报告人简介:侯建锋,现为福州大学教授,旗山学者,2011年获福建省杰出青年基金资助,其博士论文获2011年度山东省优秀博士学位论文,全国优秀博士学位论文提名奖。主要从事图与超图的划分和图染色方面的研究,解决了Bollobas(英国皇家学会会员、欧洲科学院院士)和Scott(剑桥大学教授)提出的关于图公平划分的多个猜想和公开问题,在 J. Combin. Theory Ser. A (B)、Random Struct. Algor.、Combin. Probab. Comput.、SIAM J. Discrete Math.等专业权威期刊发表SCI检索学术论文50余篇。主持国家自然科学基金项目3项,参与国家自然科学基金重点项目1项,入选福建省高等学校新世纪优秀人才支持计划。中国工业与应用数学学会图论组合及应用专业委员会委员,福建省数学会常务理事。