硕士生导师

位置: 首页 > 师资队伍 > 硕士生导师 > 正文

黄丙康

  • 职称 :讲师
  • 邮箱 :bkhuang92@hotmail.com
  • 所属系 :应用数学系
  • 主讲课程 :偏微分方程,复变函数与积分变换,概率论与数理统计
  • 研究领域 :流体力学中的偏微分方程
科研项目
  • 主持国家自然科学基金青年项目 一类等熵可压缩Navier-Stokes型方程组的大初值整体解 2020年1月-2022年12月https://www.researchgate.net/profile/Huang-Bingkang
研究成果
  • [11] Huang, B.-K.; Liu, L.; Zhang, L.; Global dynamics of 3-D compressible micropolar fluids with vacuum and large oscillations. J. Math. Fluid Mech. 23 (2021)[10] Huang, B.-K.; On the existence of dissipative measure-valued solutions to the compressible micropolar system. J. Math. Fluid Mech. 22 (2020)[9] Ha, S.-Y.; Huang, B.-K.; Xiao, Q.; Zhang, X.; A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Commun. Pure Appl. Anal. 19 (2020)[8] Huang, B.-K.; Liu, L.; Zhang, L.; On the existence of global strong solutions to 2D compressible Navier-Stokes-Smoluchowski equations with large initial data. Nonlinear Anal. Real World Appl. 49 (2019)[7] Huang, B.-K.; Zhang, L.; A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinet. Relat. Models 12 (2019)[6] Huang, B.-K.; Zhang, L.; Asymptotic stability of planar rarefaction wave to 3D radiative hydrodynamics. Nonlinear Anal. Real World Appl. 46 (2019)[5] Huang, B.-K.; Zhang, L.; A regularity criterion of strong solutions to the 2D Cauchy problem of the kinetic-fluid model for flocking. Commun. Math. Sci. 16 (2018)[4] Huang, B.-K.; Tang, S.; Zhang, L.; Nonlinear stability of viscous shock profiles for compressible Navier-Stokes equations with temperature-dependent transport coefficients and large initial perturbation. Z. Angew. Math. Phys. 69 (2018)[3] Ha, S.-Y.; Huang, B.-K.; Xiao, Q.; Zhang, X.; On the global solvability of the coupled kinetic-fluid system for flocking with large initial data. Math. Models Methods Appl. Sci. 28 (2018)[2] Huang, B.-K.; Liao, Y.; Global stability of combination of viscous contact wave with rarefaction wave for compressible Navier-Stokes equations with temperature-dependent viscosity. Math. Models Methods Appl. Sci. 27 (2017)[1] Huang, B.-K.; Wang, L.; Xiao, Q.; Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent trans- port coefficients. Kinet. Relat. Models 9 (2016)